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On the Temple lower bound for eigenvalues 

L M DELVES 
Department of Computational and Statistical Science, University of Liverpool, 
Liverpool L69 3BX, UK 

MS received 6 March 1972 

Abstract. In the first part of this paper we examine the relation between the Temple, 
Weinstein and Stevenson bounds for an arbitrary eigenvalue of a Hamiltonian H .  We show 
that, in a sense which we define, the Temple and Stevenson bounds are numerically equivalent, 
while the Weinstein bound is inferior to either. 

In the second part, the Temple bound is reformulated and it is shown that the usual 
restriction on its validity may be relaxed; the relaxation leads to rather more convenient 
calculations in the presence of excited states, but not to improved lower bounds. A numerical 
example demonstrating the extension is given. 

1. Introduction 

There exists a large number of methods for computing lower bounds on the eigenvalues 
of an hermitian operator H .  These methods differ in their ease of computation ; in their 
efficiency for a given class of trial functions ; and in the input knowledge they assume. 
This knowledge may be either of the structure of H (such as a split of the form H ,  + V 
for soluble H,) or of the approximate position of adjacent eigenvalues. 

We consider here only the ‘classical’ lower bounds, which introduce the operator 
H 2  and assume some knowledge of the level spacing. The best known of these are the 
formulae of Temple, Stevenson, and Weinstein. These are usually quoted only for the 
ground state, but apply equally well to  excited states ; we can write them in the conven- 
tional form as follows. For a given (normalized) trial function Y we define 

Then lower bounds to the pth ordered eigenvalue of H are given by : 
Weinstein (1934) 

provided 

fl i (Ep+Ep+l) .  

Temple (1928a, 1928b) 
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provided that 

Stevenson (1938) 

provided that 

B G 3(Ep+Ep+1).  (4b) 

These formulae differ both in their accuracy for a given trial function, and in their ease 
of optimization when this contains a number of linear parameters. Their accuracy has 
been compared by a number of authors. In 0 2 we add to these comparisons, and we 
hope clarify the situation in which one or other will yield the better results. In Q 3 we 
compare the computational convenience of the methods, and in particular rederive 
the Temple bound in a convenient form which allows us to ease the restriction (3b). 
A calculation on helium which demonstrates this is discussed. 

2. Relation between the Temple, Weinstein and Stevenson bounds 

The bounds (3), (4), (5) have been compared by a number of authors, with varying 
conclusions. These variations stem from the presence of the parameters a, p in ET, E s ;  
both ET and Es are monotonic increasing functions of these parameters, which are 
therefore taken in practice to be as large as possible. It is easy to make different assump- 
tions concerning the ‘possible size’ which affect the detailed comparisons. We remark 
further on this below. 

2.1. Ew and E, 

The Weinstein bound can be viewed as a special case of the Stevenson bound for the 
choice p = q 

Ew = 

Hence we have as remarked by Walmsley (1967) 

2.2. Ew and E, 

It is straightforward to derive the identity 

The denominator in this expansion is positive, as is the factor (6’ - q 2 ) l j 2 .  We therefore 
conclude that 
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provided that 

a-? > v-EW. ( 5 4  

Comment : Both the inequalities (5a), (5b) may be violated in particular calculations ; 
however, the calculations will then inevitably be very inaccurate. We recall that q 
should approximate E, while in a practical calculation we will choose fi  as close to 
(E,+ E,, 1)/2 as possible. In terms of the level spacing A = E,+ -E, we may therefore 
write the second inequality in (5a) approximately in the form 

q-E, < $A. (5c) 

Moreover, in a practical calculation a will be chosen as close as possible to E,, 1 .  Hence 
if q is close to E,, the second inequality in (5b) becomes approximately 

A 3 q-Ew. (54 

Thus Ew is worse than either Es or E, provided only that the calculation has an accuracy 
comparable with or better than the spacing between energy levels. This is a rather modest 
accuracy to aim at in most circumstances. Worse, inequality (5c) is a condition for the 
validity of the Weinstein bound; hence, to a good approximation, we may say that Ew 
is never preferable whenever it is valid. 

2.3. Es and ET 

There has been some confusion over the relation between Es and ET in the past. Kat0 
(1949) has shown that, if the only available information is given by q, 6 and E,, then 
ET(E1) is the best possible unform bound in the sense that, for all systems and some Y T, 
the Temple bound may be exact (see also Schmid and Schwager 1968). Walmsley (1967) 
on the other hand has derived the straightforward algebraic identity. 

Es(E,+a) 2 ET(4 
provided 

and concludes that the Stevenson bound is uniformly better than the Temple. This 
conclusion rests on the assumption that the comparative choice ofparameters fi = E, + a 
is valid ; however, the numerical implementation of such a comparison involves knowing 
E,, and Schmid and Schwager (1968) have tartly remarked that this knowledge leads 
to the best of all lower bounds: E,  = E,. In practice, the choice of a requires prior 
knowledge of a lower bound on E,, I ; the choice of fi requires in addition a lower bound 
on E,. We can perform one consistent comparison by either taking ET as this input 
lower bound, or by a self consistent procedure in which we set f i  = Es + a. In either case 
it is straightforward to derive the following identity (Schmid et al 1963) : 

This equation indicates a close relation between Es and ET. We now ask which would be 
preferable, for any legitimate choice of a, f i ,  if we are to attempt a calculation of high 
accuracy. For such a calculation, or sequence of calculations, we have Es, ET, q=E,. 
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We write E, = q -As, ET = q -AT and compute the ratio ASIA,. We first rewrite Es 
in the form 

E,  = p - (p’ - 2& + 62)1’2 

Whence we find immediately 

Now the ratio (9) isfinite, and to first order independent of the accuracy of the trial func- 
tion Y, (which enters only via q). Thus, for any U, p a sequence of calculations with 
increasing number of terms in YT (for example) will yield identical convergence rates 
from E,  and E,. Moreover, any choice of U, fi  close to  their ‘optimal’ values will make 
the ratio (9) close to unity. This is not so for the Weinstein bound; the corresponding 
ratio Aw/AT becomes infinite in this limit, and hence Ew converges more slowly than 
either E,  or Es.  

2.4. Input and output bounds 

Despite these results, there will be many situations in which the Temple bound is poor, 
and in which the Stevenson and Weinstein bounds appear better ; the calculations of 
Walmsley (1967) form such a case. This gain is then essentially illusory. Both E,and Ew 
require for their validity information which we can interpret as an input lower bound on 
the eigenvalue E,. For Ew this is given by (2b), which may be written 

E ,  3 277-Ep+1 = E,, (Weinstein input bound). (2b’) 

While any given choice of the parameter p yields a similar input bound for Es 

E, 3 2 p - E p + ,  E,, (Stevenson input bound). (4b‘) 

If the output bounds Ew, Es  lie below the input bounds EwI, Es,, it cannot be said that 
we have gained much. The discussion above then shows that this will always be so 
whenever E,, E, are better than E,. 

We illustrate this remark with numerical results from a calculation in the three- 
nucleon system 3H with the Hamada-Johnston potential (Hamada and Johnston 
1962). The upper and Temple lower bound4 E ,  and E ,  for this work have been published 
(Delves and Hennell 1971); the latter are very bad. Table 1 gives these bounds, and also 
the input and output Stevenson and Weinstein bounds, for several wavefunctions. 
For this calculation E,+ represents the two-body deuteron energy, and is known: 
the upper bound appeared to be converging to - 6.5 MeV. The input Es, determines /I. 
and has been set at - 10 MeV, well below this. We see from table 1 that indeed we get 
less out of E ,  and E ,  than we put into them, although they are attractively higher than E,. 
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Table 1. Bounds for the energy E(") with the Hamada-Johnston potential 

Ritz Temple Weinstein Stevenson 

Input Output Input Output 
N Y E, ET EWI EW E,, E ,  

YU -4.13 -294.0 -1.2 -31.7 - 10.0 -33.1 
YL -3.66 - 187.6 -5.1 - 20.0 - 10.0 -22.6 6 

13 YU -5.60 -429.4 -9.0 -43.5 - 10.0 -44.0 
YL -3.18 - 129.4 -5.3 - 17.8 - 10.0 - 20.3 

23 Yu 
-5.72 - 359.5 - 9.2 -41.0 -10.0 -41.3 

YL -3.80 - 67.0 -5.4 - 13.8 - 10.0 - 16.4 

66 Yu 
-6.40 -206.2 - 10.6 -35.3 - 10.0 -35.0 

YL -3.93 -41.2 -5.6 -11.9 - 10.0 - 14.4 
~~ 

These results come from the calculation of (Delves and Hennell 1971). N is the number of 
linear parameters in the trial function; '4'" and YL represent trial functions whose linear 
parameters have been optimized for the upper (E, )  and Temple lower (ET) bounds respectively. 
E,,, E,, are the input bounds (2b'), (4b') for the Weinstein and Stevenson lower bounds 
Ew, E s .  

3. Extension of the Temple bound 

We now rederive the Temple bound in a computationally convenient form. The 
Schrodinger equation for an eigenvalue E is 

( H -  E)'? = 0. 

We write this in the form 

(L-y)Y  = 0 L =  H - a  y = E - U  

whence premultiplying by the operator L we find 

(L-cL2)Y = 0 E = l / y .  (10) 

This equation is formally similar to the original Schrodinger equation, since the operator 
L2 is positive definite (we exclude the case that c1 is an eigenvalue of H ) .  A linear trial 
function YT = Xy= aiN)hi with N terms leads to the finite matrix equation for dN) : 

(L(,) - E(N)L&))(2(N) = 0. (1 1) 

Moreover, the Hylleraas-Undheim theorem holds for the pair (lo), (1 1); that is, if we 
order the eigenvalues ci and approximations elN) 
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Now the ordering (12) induces a mapping between the ci and the (ordered) E i .  Let us 
suppose that ci = l/(Eji - LY.) ; then (13) reads 

Now if Eji < M ,  the right hand side is negative. If $"') is positive, (134 is then not very 
useful. If c j N )  is negative, we invert the inequality to  read 

(14) 

Equation (14) has the form of the Temple bound. To see this, let us choose (as is usual) 

E, < LY. < E,. 

Then there exists only one negative ci = c ,  : and E j ,  = E , .  Moreover, the solution of 
(1 1) yields the Rayleigh quotient 

- v - u  - 
6, - 2uv + C Y *  

whence (14) may be put in the form (3). 
However, we may use (14) to ease the restriction (3b) on the parameter 2. Let us 

suppose that E, < LY. < E,+ ; there are then p negative eigenvalues q. Moreover, the 
correspondence between the first p ci and E ,  is as follows : 

(€1 > E,) ( € 2 ,  E,- 1) ( € 3 ,  E p - 2 ) .  . '(t,, El). 

Let us suppose that there are q < p negative eigenvalues cy), i = 1 . . . q. Then these q 
eigenvalues yield via (14) lower bounds on E,, E , - l . .  . E,-,+,. For a 'sufficiently 
good' trial function we shall have q = p ; we then have in particular a lower bound on the 
ground state E ,  using the Temple formula with a value of ct > E,. If q < p ,  the lower 
bounds which we obtain can however be expected to  be rather poor; the numerical 
results below show clearly that they then tend to be approximations to  E,. . . E,,  although 
of course valid lower bounds to E,. . . We may use this extension to find im- 
proved lower bounds on any eigenvalue : we compute the eigenvalues ' I N )  for increasing CI, 

checking meanwhile that the appropriate number of negative cf') exists. We illustrate 
the extension with a calculation on the 1 's  and 2% states of the helium atom, using the 
basis exp( - S(lr,  + mr, + nr,,)}. The calculation was performed using a general purpose 
program which has been described elsewhere (Delves and Kalotas 1968). The first three 
eigenvalues of this system are in atomic units 

E(1'S) = -2,9037243 E(2'S) = -291459681 E(3lS) = -2.0612558. 

Calculations were performed using 40 and 60 term functions, witha = - 2.06128 N E(3'S). 
The results are shown in figure 1 as a function of the scale parameter S .  For small values 
of the scale ( S  5 2.0) only one negative eigenvalue ciN) was found. This then yields via 
(14) a lower bound on E(2lS); however, it is evident from figure 1 that it is in fact a 
rather good approximation to E(1'S) and an extremely poor lower bound to E(2'S). 
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Figure 1. Temple lower bounds for the singlet states of the helium atom using a basis 
exp{ - S ( / r ,  + m r ,  + n r , , ) }  with N = 40 and 60 terms. The reference energy a used is 
a = - 2.06128 U E(3lS); c l ,  E ,  are the algebraically smallest and second smallest eigenvalues 
of equation (11). These lead to lower bounds on €42'9 and E(1'S) respectively. Note that 
the definition in terms of their ordering induces a break in the curves of E,, c 2  as a function 
of the scale S, and that for small S c l  Gelds a good approximation to E(liS);ather than to 
E(2'S). 

This result is to be expected, on continuity grounds. For larger scale factors, we found 
two negative tiN) for both N = 40 and N = 60, and hence obtained lower bounds on 
both E(llS) and E(2lS). The best lower bounds found in this way are shown in table 2, 
together with the values obtained for the 'conventional' Temple bound using 
a = -2.146 N E(2 lS) .  

Table 2. Temple lower bounds for the helium atom 

State 1's 2% 

E exact - 2.9037243 - 2.1459681 
N = 40,a = -2.06128 -2.90411 - 2.15328 
N = 60, a = -2.06128 -2.90373 -2.14605 
N = 40,a = -2.146 -2.90388 - 
N = 60, a = -2.146 -2.90372 - 

The last figure in each result may be in error by one unit due to round-off errors. 

4. Discussion 

The conventional results above show clearly that there is a nett loss in accuracy for the 
ground state from the use of the generalization given for the Temple bound. In this 
sense the gain has been negative. However, we have the advantage that it is no longer 
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necessary to know the number or location of the excited states of the system used. For 
any choice of the parameter c( (such that there is only a finite number of levels below tl), 
a calculation with increasing N will ‘eventually’ yield the full number of bound states 
and hence a lower bound on these low-lying levels. The form (14) is also useful in that 
it leads, via (ll), to a straightforward optimization of the linear parameters in the trial 
function. A similar formalism exists for the Stevenson bound, by replacing (10) by the 
equation 

(L2-1/2)Y = 0 L =  H - / 3  7 = E - P .  

In practice, the Stevenson and Temple bounds are therefore essentially equivalent in 
both convenience and in results ; the Temple bound then has the advantage that its side 
conditions do not involve the eigenvalue to be computed. The Weinstein bound on the 
other hand does not appear to lead to such straightforward optimization procedures, 
and despite suggestions to the contrary (Goodison 1967) would seem to have little to 
recommend it as a procedure for bounding excited states. 
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